ML.NET for Beginners
Fisrt ML.Net ConsoleApp
<ItemGroup>
<PackageReference Include="Microsoft.ML" Version="4.0.2" />
</ItemGroup>
using Microsoft.ML;
using Microsoft.ML.Data;
namespace FisrtML.netConsoleApp
{
internal class Program
{
static void Main(string[] args)
{
Console.WriteLine("Hello, World!");
}
}
}
//Step 1. Create an ML Context
var ctx = new MLContext();
//Step 2. Read in the input data from a text file for model training
IDataView trainingData = ctx.Data
.LoadFromTextFile<ModelInput>(dataPath, hasHeader: true);
//Step 3. Build your data processing and training pipeline
var pipeline = ctx.Transforms.Text
.FeaturizeText("Features", nameof(SentimentIssue.Text))
.Append(ctx.BinaryClassification.Trainers
.LbfgsLogisticRegression("Label", "Features"));
//Step 4. Train your model
ITransformer trainedModel = pipeline.Fit(trainingData);
//Step 5. Make predictions using your trained model
var predictionEngine = ctx.Model
.CreatePredictionEngine<ModelInput, ModelOutput>(trainedModel);
var sampleStatement = new ModelInput() { Text = "This is a horrible movie" };
var prediction = predictionEngine.Predict(sampleStatement);
https://dotnet.microsoft.com/zh-cn/apps/ai/ml-dotnet
出租车
https://www.cnblogs.com/kenwoo/p/10171481.html
为了理解ML.NET的使用,我们通过一个具体的分类任务——预测客户是否会购买某产品,来演示如何构建和训练一个ML模型。这个任务贴近实际业务需求,掌握机器学习的基本流程。
https://www.cnblogs.com/code-daily/p/18749505